Детали машин - Definition. Was ist Детали машин
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Детали машин - definition


Детали машин         
(от франц. détail - подробность)

элементы машин, каждый из которых представляет собой одно целое и не может быть без разрушения разобран на более простые, составные звенья машин. Д. м. является также научной дисциплиной, рассматривающей теорию, расчёт и конструирование машин.

Число деталей в сложных машинах достигает десятков тысяч. Выполнение машин из деталей прежде всего вызвано необходимостью относительных движений частей. Однако неподвижные и взаимно неподвижные части машин (звенья) также делают из отдельных соединённых между собой деталей. Это позволяет применять оптимальные материалы, восстанавливать работоспособность изношенных машин, заменяя только простые и дешёвые детали, облегчает их изготовление, обеспечивает возможность и удобство сборки.

Д. м. как научная дисциплина рассматривает следующие основные функциональные группы.

Корпусные детали (рис. 1), несущие механизмы и другие узлы машин: плиты, поддерживающие машины, состоящие из отдельных агрегатов; станины, несущие основные узлы машин; рамы транспортных машин; корпусы ротационных машин (турбин, насосов, электродвигателей); цилиндры и блоки цилиндров; корпусы редукторов, коробок передач; столы, салазки, суппорты, консоли, кронштейны и др.

Передачи - механизмы, передающие механическую энергию на расстояние, как правило, с преобразованием скоростей и моментов, иногда с преобразованием видов и законов движения. Передачи вращательного движения, в свою очередь, делят по принципу работы на передачи зацеплением, работающие без проскальзывания, - зубчатые передачи (См. Зубчатая передача) (рис. 2, а, б), червячные передачи (См. Червячная передача) (рис. 2, в) и цепные, и передачи трением - ремённые передачи (См. Ремённая передача) и фрикционные с жёсткими звеньями. По наличию промежуточного гибкого звена, обеспечивающего возможность значительных расстояний между валами, различают передачи гибкой связью (ремённые и цепные) и передачи непосредственным контактом (зубчатые, червячные, фрикционные и др.). По взаимному расположению валов - передачи с параллельными осями валов (цилиндрические зубчатые, цепные, ремённые), с пересекающимися осями (конические зубчатые), с перекрещивающимися осями (червячные, гипоидные). По основной кинематической характеристике - передаточному отношению - различают передачи с постоянным передаточным отношением (редуцирующие, повысительные) и с переменным передаточным отношением - ступенчатые (коробки передач (См. Коробка передач)) и бесступенчатые (Вариаторы). Передачи, преобразующие вращательное движение в непрерывное поступательное или наоборот, разделяют на передачи винт - гайка (скольжения и качения), рейка - реечная шестерня, рейка - червяк, длинная полугайка - червяк.

Валы и оси (рис. 3) служат для поддерживания вращающихся Д. м. Различают валы передач, несущие детали передач - зубчатые колёса, шкивы, звёздочки, и валы коренные и специальные, несущие, кроме деталей передач, рабочие органы двигателей или машин орудий. Оси, вращающиеся и неподвижные, нашли широкое применение в транспортных машинах для поддержания, например, неведущих колёс. Вращающиеся валы или оси опираются на Подшипники (рис. 4), а поступательно перемещающиеся детали (столы, суппорты и др.) движутся по направляющим (См. Направляющие). Опоры скольжения могут работать с гидродинамическим, аэродинамическим, аэростатическим трением или смешанным трением. Опоры качения шариковые применяются при малых и средних нагрузках, роликовые - при значительных нагрузках, игольчатые - при стеснённых габаритах. Наиболее часто в машинах используют подшипники качения, их изготавливают в широком диапазоне наружных диаметров от одного мм до нескольких м и массой от долей г до нескольких т.

Для соединения валов служат муфты. (См. Муфта) Эта функция может совмещаться с компенсацией погрешностей изготовления и сборки, смягчением динамических воздействий, управлением и т.д.

Упругие элементы предназначаются для виброизоляции и гашения энергии удара, для выполнения функций двигателя (например, часовые пружины), для создания зазоров и натяга в механизмах. Различают витые пружины, спиральные пружины, листовые рессоры, резиновые упругие элементы и т.д.

Соединительные детали являются отдельной функциональной группой. Различают: неразъёмные соединения (См. Неразъёмное соединение), не допускающие разъединения без разрушения деталей, соединительных элементов или соединительного слоя - сварные (рис. 5, а), паяные, заклёпочные (рис. 5, б), клеевые (рис. 5, в), вальцованные; разъёмные соединения (См. Разъёмное соединение), допускающие разъединение и осуществляемые взаимным направлением деталей и силами трения (большинство разъёмных соединений) или только взаимным направлением (например, соединения призматическими Шпонками). По форме присоединительных поверхностей различают соединения по плоскостям (большинство) и по поверхностям вращения - цилиндрической или конической (вал - ступица). Широчайшее применение в машиностроении получили сварные соединения. Из разъёмных соединений наибольшее распространение получили резьбовые соединения, осуществляемые винтами, болтами, шпильками, гайками (рис. 5, г).

Прообразы многих Д. м. известны с глубокой древности, самые ранние из них - рычаг и клин. Более 25 тыс. лет назад человек стал применять пружину в луках для метания стрел. Первая передача гибкой связью была использована в лучковом приводе для добывания огня. Катки, работа которых основана на трении качения, были известны более 4000 лет назад. К первым деталям, приближающимся по условиям работы к современным, относятся колесо, ось и подшипник в повозках. В древности и при строительстве храмов и пирамид пользовались Воротами и Блоками. Платон и Аристотель (4 в. до н. э.) упоминают в своих сочинениях о металлических цапфах, зубчатых колёсах, кривошипах, катках, полиспастах. Архимед применил в водоподъёмной машине винт, по-видимому, известный и ранее. В записках Леонардо да Винчи описаны винтовые зубчатые колёса, зубчатые колёса с вращающимися цевками, подшипники качения и шарнирные цепи. В литературе эпохи Возрождения имеются сведения о ремённых и канатных передачах, грузовых винтах, муфтах. Конструкции Д. м. совершенствовались, появились новые модификации. В конце 18 - начале 19 вв. широкое распространение получили заклёпочные соединения в котлах, конструкциях ж.-д. мостов и т.п. В 20 в. заклёпочные соединения постепенно вытеснялись сварными. В 1841 Дж. Витвортом в Англии была разработана система крепёжных резьб, явившаяся первой работой по стандартизации в машиностроении. Применение передач гибкой связью (ремённой и канатной) было вызвано раздачей энергии от паровой машины по этажам фабрики, с приводом трансмиссий и т.д. С развитием индивидуального электропривода ремённые и канатные передачи стали использовать для передачи энергии от электродвигателей и первичных двигателей в приводах лёгких и средних машин. В 20-е гг. 20 в. широко распространились клиноремённые передачи. Дальнейшим развитием передач с гибкой связью являются многоклиновые и зубчатые ремни. Зубчатые передачи непрерывно совершенствовались: цевочное зацепление и зацепление прямобочного профиля со скруглениями было заменено циклоидальным, а потом эвольвентным. Существенным этапом было появление круговинтового зацепления М. Л. Новикова. С 70-х годов 19 в. начали широко применяться подшипники качения. Значительное распространение получили гидростатические подшипники и направляющие, а также подшипники с воздушной смазкой.

Материалы Д. м. в большой степени определяют качество машин и составляют значительную часть их стоимости (например, в автомобилях до 65-70\%). Основными материалами для Д. м. являются сталь, чугун и цветные сплавы. Пластические массы применяют как электроизолирующие, антифрикционные и фрикционные, коррозионно-стойкие, теплоизолирующие, высокопрочные (стеклопласты), а также как обладающие хорошими технологическими свойствами. Резины используют как материалы, обладающие высокой упругостью и износостойкостью. Ответственные Д. м. (зубчатые колёса, сильно напряжённые валы и др.) выполняют из закалённой или улучшенной стали. Для Д. м., размеры которых определяются условиями жёсткости, используют материалы, допускающие изготовление деталей совершенных форм, например незакалённую сталь и чугун. Д. м., работающие при высоких температурах, выполняют из жаростойких или жаропрочных сплавов. На поверхности Д. м. действуют наибольшие номинальные напряжения от изгиба и кручения, местные и контактные напряжения, а также происходит износ, поэтому Д. м. подвергают поверхностным упрочнениям: химико-термической, термической, механической, термо-механической обработке.

Д. м. должны с заданной вероятностью быть работоспособными в течение определённого срока службы при минимально необходимой стоимости их изготовления и эксплуатации. Для этого они должны удовлетворять критериям работоспособности: прочности, жёсткости, износостойкости, теплостойкости и др. Расчёты на прочность Д. м., испытывающих переменные нагрузки, можно вести по номинальным напряжениям, по коэффициентам запаса прочности с учётом концентрации напряжений и масштабного фактора или с учётом переменности режима работы. Наиболее обоснованным можно считать расчёт по заданной вероятности и безотказной работы. Расчёт Д. м. на жёсткость обычно осуществляют из условия удовлетворительной работы сопряжённых деталей (отсутствие повышенных кромочных давлений) и условия работоспособности машины, например получения точных изделий на станке. Для обеспечения износостойкости стремятся создать условия для жидкостного трения, при котором толщина масляного слоя должна превышать сумму высот микронеровностей и др. отклонений от правильной геометрической формы поверхностей. При невозможности создания жидкостного трения давление и скорости ограничивают до установленных практикой или ведут расчёт на износ на основе подобия по эксплуатационным данным для узлов или машин того же назначения. Расчёты Д. м. развиваются в следующих направлениях: расчётная оптимизация конструкций, развитие расчётов на ЭВМ, введение в расчёты фактора времени, введение вероятностных методов, стандартизация расчётов, применение табличных расчётов для Д. м. централизованного изготовления. Основы теории расчёта Д. м. были заложены исследованиями в области теории зацепления (Л. Эйлер, X. И. Гохман), теории трения нитей на барабанах (Л. Эйлер и др.), гидродинамической теории смазки (Н. П. Петров, О. Рейнольдс, Н. Е. Жуковский и др.). Исследования в области Д. м. в СССР проводятся в Институте машиноведения, Научно-исследовательском институте технологии машиностроения, МВТУ им. Баумана и др. Основным периодическим органом, в котором публикуются материалы о расчёте, конструировании, применении Д. м., является "Вестник машиностроения".

Развитие конструирования Д. м. происходит в следующих направлениях: повышение параметров и разработка Д. м. высоких параметров, использование оптимальных возможностей механических с твёрдыми звеньями, гидравлических, электрических, электронных и др. устройств, проектирование Д. м. на срок до морального старения машины, повышение надёжности, оптимизация форм в связи с новыми возможностями технологии, обеспечение совершенного трения (жидкостного, газового, качения), герметизация сопряжений Д. м., выполнение Д. м., работающих в абразивной среде, из материалов, твёрдость которых выше твёрдости абразива, стандартизация и организация централизованного изготовления.

Лит.: Детали машин. Атлас конструкций, под ред. Д. Н. Решетова, 3 изд., М., 1968; Детали машин. Справочник, т. 1-3, М., 1968-69.

Д. Н. Решетов.

Рис. 1. Корпусные детали: а - плита; б - горизонтальная станина; в - стойка; г - портальная станина; д - корпус электродвигателя с крышками; е - корпус редуктора; ж - стол.

Рис. 2. Передачи: а - зубчатая цилиндрическая; б - зубчатая коническая; в - червячная.

Рис. 3. Валы и оси: а - вал ступенчатый; б - шпиндель металлорежущего станка; в - вал коленчатый.

Рис. 4. Подшипники: а - шариковый; б - роликовые цилиндрический и конический; в - скольжения.

Рис. 5. Соединения: а - сварное; б - заклёпочное; в - клеевое; г - резьбовое.

накладка         
ПРОСТЕЙШАЯ ЧАСТЬ МЕХАНИЗМА, МАШИНЫ
Деталь машины; Накладка
ж.
1) разг. То же, что: накладывание.
2) Накладная часть какого-л. оружия, механизма и т.п.
3) Металлическая планка, петля, надеваемая на скобу для висячего замка.
4) Изделие из чужих волос (парик и т.п.).
5) а) Украшение из материи, пришиваемое к женскому платью.
б) Нашивка на платье или на каком-л. другом сшитом изделии.
6) перен. разг. Ошибка, промах.
7) перен. Запрещенный способ игры в футболе, когда игрок подставляет ступню своему противнику, бьющему по мячу.
ДЕТАЛЬ         
ПРОСТЕЙШАЯ ЧАСТЬ МЕХАНИЗМА, МАШИНЫ
Деталь машины; Накладка
(от франц. detail, букв. - подробность), в технике - изделие, изготовленное без применения сборочных операций. Деталью называются также изделия, подвергнутые защитным или декоративным покрытиям или изготовленные из одного куска материала пайкой, склейкой, сваркой и т. п.

Wikipedia

Детали машин

Термин «детали машин» может означать:

  • Деталь
  • Теория механизмов и машин
Beispiele aus Textkorpus für Детали машин
1. Инна Васильевна. * Справочник " Детали машин, расчет и конструирование", 3 т.
2. М. * Справочник: "Детали машин, расчет и конструирование", 3 т.
3. Т. 5'1-46-04. * Справочник "Детали машин, расчет и конструирование", 3 т.
4. Магазины и отделы будут оформлены вывеской "Детали машин "ГАЗ" и в стиле ГАЗа.
5. Т. 754-74-64. * Справочник "Детали машин, расчет и конструирование", 3 т.